Model-based measurement of latent risk in time series with applications
نویسندگان
چکیده
Risk is at the centre of many policy decisions in companies, governments and other institutions.The risk of road fatalities concerns local governments in planning countermeasures, the risk and severity of counterparty default concerns bank risk managers daily and the risk of infection has actuarial and epidemiological consequences. However, risk cannot be observed directly and it usually varies over time. We introduce a general multivariate time series model for the analysis of risk based on latent processes for the exposure to an event, the risk of that event occurring and the severity of the event. Linear state space methods can be used for the statistical treatment of the model. The new framework is illustrated for time series of insurance claims, credit card purchases and road safety. It is shown that the general methodology can be effectively used in the assessment of risk.
منابع مشابه
Risk prediction based on a time series case study: Tazareh coal mine
In this work, the time series modeling was used to predict the Tazareh coal mine risks. For this purpose, initially, a monthly analysis of the risk constituents including frequency index and incidence severity index was performed. Next, a monthly time series diagram related to each one of these indices was for a nine year period of time from 2005 to 2013. After extrusion of the trend, seasonali...
متن کاملAn application of Measurement error evaluation using latent class analysis
Latent class analysis (LCA) is a method of evaluating non sampling errors, especially measurement error in categorical data. Biemer (2011) introduced four latent class modeling approaches: probability model parameterization, log linear model, modified path model, and graphical model using path diagrams. These models are interchangeable. Latent class probability models express l...
متن کاملInterpolating time series based on fuzzy cluster analysis problem
This study proposes the model for interpolating time series to use them to forecast effectively for future. This model is established based on the improved fuzzy clustering analysis problem, which is implemented by the Matlab procedure. The proposed model is illustrated by a data set and tested for many other datasets, especially for 3003 series in M3-Competition data. Comparing to the exist...
متن کاملRisk measurement and Implied volatility under Minimal Entropy Martingale Measure for Levy process
This paper focuses on two main issues that are based on two important concepts: exponential Levy process and minimal entropy martingale measure. First, we intend to obtain risk measurement such as value-at-risk (VaR) and conditional value-at-risk (CvaR) using Monte-Carlo methodunder minimal entropy martingale measure (MEMM) for exponential Levy process. This Martingale measure is used for the...
متن کاملApplication of Model-Based Estimation to Time-Delay Estimation of Ultrasonic Testing Signals
Time-Delay-Estimation (TDE) has been a topic of interest in many applications in the past few decades. The emphasis of this work is on the application of model-based estimation (MBE) for TDE of ultrasonic signals used in ultrasonic thickness gaging. Ultrasonic thickness gaging is based on precise measurement of the time difference between successive echoes which reflect back from the back wall ...
متن کامل